My research interests include the long-term evolution of rocky planets, how interior processes are linked to a planet’s surface tectonics and volcanism, and how these processes ultimately affect the planet’s (in)habitability. I strive to integrate observations from space, geophysics, geology, and geo/cosmo-chemistry into a physics-based framework using numerical modelling techniques. You can find more details on my research projects below. 

Venus: Earth's mysterious sister planet

Our neighbouring planet Venus presents a clear contrast of tectonics with the Earth, despite similar interior structure and composition. Even in the absence of plate tectonics, Venus’ surface is littered with volcanic structures, rifts, and mountains. To what extent these surface features reflect the current state of the planet’s interior, remains in question. A better understanding of the dynamic interior processes at play, and how they link to the Venus’ surface, is key for our understanding of the evolution of rocky planets (such as Earth), and even their habitability.

Venus holds the key to Earth's past - or future?

Venus and Earth perhaps resembled each other in their earliest history. Yet, they set off on very different evolutionary paths, leaving Earth and Venus with surface environments that could not be more different. Whereas Earth’s environment is habitable and allows for liquid water, Venus obtains a crushingly thick atmosphere over a hellish, hot surface. Understanding the dynamic mechanisms responsible for Venus’ geological history is a key objective in terrestrial planetary sciences, as it helps to answer why Earth and Venus have undergone such staggeringly divergent evolutionary paths towards their (in)habitable states.

Read more in our 2022 and 2023 Space Science Reviews papers in the collection ‘Venus: Evolution Through Time‘ 

Top: image from our 2023 review paper

Volcano-tectonic "corona" structures provide unique insights into the geological activity of Venus

Corona structures are large ring-shaped volcano-tectonic structures abundant on the Venusian surface and bear testimony of turbulent interior processes: 

I systematically ran 3D computer models of plume-lithosphere interactions on Venus to assess the origin of coronae and the reason behind their morphological differences. Corona morphologies not only represent different dynamic styles of plume-lithosphere interactions, but also different stages in evolution. I found corona structures related to ongoing plume-lithosphere activity may be distinguished from fossil corona structures. Guided by these outcomes, I systematically investigated the topography of large Venusian coronae using planetary mission data and assessed their activity. This assessment revealed broad regions of ongoing plume activity on the planet, presenting new evidence for widespread recent magmatic activity on the surface of Venus. The global distribution of this proposed tectono-magmatic activity sparks intriguing questions on Venusian deep interior circulation and dynamics.

Published in our 2020 Nature Geoscience paper

Lay article published as 2021 The Science Breaker paper

In nature, many Venusian coronae display more complex morphologies than those investigated in earlier numerical studies (see above).  In our follow-up work, we classified 140 largest coronae on Venus in terms of surface morphology and topography. This reveals that the majority of coronae are radially asymmetrical, of which many are positioned at a topographic margin. With 3D numerical models, we investigate the physical processes behind plume-margin interactions on Venus and find a strong dependence of lithospheric resurfacing style and magmatic activity on lithospheric structure. With these results, we make important conclusions about the physical processes responsible for Venus’ geology. 

Paper under review

The peculiar case of rift tectonics on Venus

One of the most prominent tectonic features on the Venusian surface is the presence of huge rift structures (“chasmata”). These rift systems can extend for thousands of kilometres and are present in numerous regions of the planet, but most dramatically throughout the Beta-Atla-Themis (BAT) region. Chasmata have similarities with some ultra-slow continental rifts and mid-ocean ridges on Earth. Yet, they also display unique features unlike terrestrial analogues, such as extreme dimensions, complex and discontinuous deformation  patterns, and their association with numerous coronaeA key question of my research concerns how lithospheric extension accommodated within Venusian rift zones acts within Venus’ global tectonics and links to plumes, intrusive magmatism, and lithospheric delamination. 

More coming soon!

Towards a recipe for the deep Earth

The lower mantle is the largest geochemical reservoir in the Earth’s interior. It controls the style of mantle convection and, through it, the long-term evolution of our planet. Constraining the composition and structure of Earth’s lower mantle, however, remains a scientific challenge that requires cross-disciplinary efforts. During my PhD, I have searched for the chemical and rheological recipe of Earth’s lower mantle through numerical models of long-term mantle convection and integration with interdisciplinary observations of the deep Earth.

Geodynamic and tectonic consequences of strain-weakening rheology in the lower mantle: narrow, "cool" mantle plumes​

Earth’s lower mantle’s main constituents are the strong mineral Bridgmanite (~80%) and the weaker Ferropericlase (~20%). The viscosity of such a multiphase rock depends on the modal abundance of weak versus strong minerals as well as the fabric of the rock. Using geodynamic models with a newly implemented strain-weakening (SW) rheology, we study the effect of strain-weakening rheology on global-scale mantle convection. We find that SW rheology particularly influences mantle flow patterns, thermochemical pile stability, and the features of mantle plumes. We ultimately propose that weakened plumes could explain the long-known discrepancy between expected and observed thermal anomalies of deep-seated mantle plumes on Earth.

Coupled dynamics of primordial and recycled heterogeneity in Earth's lower mantle

We address the nature of chemical lower-mantle heterogeneity, how it has evolved over time, and how it has affected our planet’s evolution. I investigate the coupled dynamics and evolution of primordial domains and recycled materials in numerical models of mantle convection. Primordial and recycled materials are robustly predicted to co-exist with each other. This study provides a new integration of independent hypotheses of present-day lower-mantle heterogeneity, which we link to geochemical and geophysical observations.

Published in our 2021 Solid Earth paper

We further present the first 3D spherical shell mantle convection models that explicitly address the evolution of multiple types of mantle heterogeneity (i.e., intrinsically-dense, recycled and intrinsically-strong, primordial materials) in Earth-like planets, and describe mixing behaviour and geometries of recycled and primordial mantle reservoirs in the 3D mantle. The work provides an important step towards integrating recent theories of Earth’s mantle structure into a more realistic framework.

Paper in preparation

Dynamic styles of primordial material preservation in Earth's interior

Cosmo- and geochemical constraints indicate that Earth’s lower mantle hosts an ancient primordial reservoir enriched in silica with respect to the upper mantle. Yet, geophysical observations and models point to efficient convective mixing across the entire mantle. Here, I explore the effects of composition-dependent rheology on heterogeneity preservation and the styles of mantle mixing. Several regimes of primordial material preservation can occur in terrestrial planets, some of which are here characterised for the first time and can reconcile the preservation of primordial domains in Earth’s convecting mantle. 

Published in our 2020 EPSL paper 

Intra-oceanic subduction initiation on Earth

Extensional detachment faults, widely documented in slow-spreading and ultraslow-spreading ridges on Earth, can effectively localise deformation due to their weakness. After the onset of oceanic closure, these weak faults may control the nucleation of a subduction zone parallel to the former mid-ocean ridge. We conducted a series of 3D numerical experiments to investigate the formation of detachment faults in slow oceanic spreading systems and their subsequent response upon inversion from spreading to convergence. We define the controlling parameters for detachment fault formation, and show how these faults affect the dynamics of intra-oceanic subduction initiation. 

Published in our 2019 EPSL paper


Feel free to contact me if you’d like to collaborate on an existing or new research project